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Despite their topological complexity almost all functional properties of metabolic networks can be derived
from steady-state dynamics. Indeed, many theoretical investigations �like flux-balance analysis� rely on ex-
tracting function from steady states. This leads to the interesting question as to how metabolic networks avoid
complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to
binary dynamics generated by simple local rules. We find that the networks’ response is highly specific:
Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with
identical degree sequences. Already small topological modifications substantially enhance the capacity of a
network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally
pronounced regularization of dynamics encoded in the topology may explain why steady-state behavior is
ubiquitous in metabolism.
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I. INTRODUCTION

The general notion of network biology �1� proposes an
abstract view of biological systems: The components’ com-
plex interaction pattern is represented by a mathematical
graph consisting of nodes and links. The aim is to understand
universal features and design principles of complex biologi-
cal networks at a system-wide level �1–3�. Recent findings
include the ubiquity of heavy-tail degree distributions �1�, a
“bow-tie” structure of certain network types �4,5�, the pres-
ence of modules �6–8�, and a similarity in motif content of
functionally related networks �9�. An important focus of re-
search is to develop models of graph construction which
yield similar statistical properties as the real graphs
�7,10–12�. This modeling task is complicated by the fact that
dynamic performance is a criterion in the evolutionary shap-
ing of some types of biological networks �13,14�. Conse-
quently, a current challenge is to incorporate dynamics into
this general framework—i.e., to link topology and dynamic
function. For gene regulatory networks huge progress has
been made in the last few years in that regard: The motif
content of eukaryotic genetic networks �9� has been shown
�13� to correlate with the dynamic robustness profile of these
motifs; the dominant branch of the largest attractor of a re-
duced yeast cell cycle network under the framework of Bool-
ean dynamics coincides with the experimentally observed
sequence of cell states �15�.

In the case of metabolic networks the situation is far more
involved. Since the dynamics of the metabolic concentra-
tions lacks an approximately binary behavior, refined kinetic
models have been developed �see, e.g., �16,17��. Due to the
limited knowledge of kinetic parameters, such models are
often restricted to subnetworks, lacking a large-scale per-
spective, unless strong simplifications and abstractions are

introduced in the dynamics. Many approaches exploit an in-
triguing feature of metabolic network dynamics: the conver-
gence to a steady state. Flux balance analysis �FBA� �18,19�,
for instance, retains the stoichiometric matrix �and, therefore,
the interaction pattern of the network� to formulate hypoth-
eses on the overall performance of the system, together with
an objective function incorporating constraints on the meta-
bolic dynamics. This method and related steady-state ap-
proaches have been successfully applied to the phenotypic
prediction of various wild-type species and mutants under
different environmental conditions �see, e.g., �20–22��.

Here, we address a fundamental topological question:
How well is a particular network designed to suppress com-
plex dynamics? We select rules which lead to transient �i.e.,
non-steady-state� binary dynamics on metabolic networks
and compare the pattern complexity for the real and modified
topologies. Note that, obviously, our dynamics has no imme-
diate connection to real metabolic dynamics; it rather serves
as a dynamic probe on complex networks. We find that—in
spite of the structural and dynamical abstractions—real
metabolic network topologies exhibit the capacity to maxi-
mally regularize an imposed complex dynamics compared
randomized topologies with identical degree sequences.

II. MATERIALS AND METHODS

We use the metabolic networks compiled by Ma and Zeng
�MZ� �24�. Their data rely on the KEGG database �25� and
incorporate enzyme-catalyzed reactions based on genomic
analyses and biochemical literature. In this unipartite,
substrate-centric representation, metabolites �nodes� are con-
nected by biochemical reactions �links� whenever the cata-
lyzing enzyme is encoded in the respective genome. Com-
pared to other metabolic network representations the MZ
networks are relatively sparse. This is due to the exclusion of
frequently occurring metabolites like ATP or NADH from
those reactions, where they act as current metabolites �or*Electronic address: marr@bio.tu-darmstadt.de
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carrier metabolites; cf. �7�� only �see �24� for a detailed dis-
cussion of current metabolites in metabolic networks�. As
noted in �24�, the exclusion of current metabolites is reason-
able in terms of metabolic pathways—otherwise, for ex-
ample, the path length �number of reaction steps� from glu-
cose to pyruvate in the glycolysis pathway would reduce
from 9 to 2 �24�. Since we are less interested in mass flow
and catalytic regulation, and more interested in the informa-
tion processing capabilities of such pathways, the substrate-
centric representation of biochemically meaningful pathways
of the MZ networks is an appropriate choice. However, we
performed parts of our analysis on other network representa-
tions �see Sec. III� with similar findings. From the available
data we only use the largest connected component of the
networks similarly to previous studies �4,8,26�. Hence, we
limit our attention to the most prominent part of the meta-
bolic networks �on average, the largest connected component
comprises 54% of the nodes and 66% of the links of the
complete network for the 107 species in the MZ database�
and avoid dynamical artifacts due to isolated residual sub-
graphs of different size.

Cellular automata �CA� are a well-known tool from com-
plexity theory. Under rather general assumptions symmetry
arguments reduce the rule space for binary cellular automata
on graphs to a set of few outer-totalistic �27� automata. The
effect of these assumptions �like isotropy, locality, and lin-
earity� on the range of possible CA rules will be discussed
elsewhere �28��. Most of the rules lead to trivial spatiotem-
poral patterns—e.g., oscillations or a steady state like the
frequently used majority rule �29,30�. Here, we choose one
of those rules, which leads to non-steady-state behavior on
metabolic network topologies. Each node acts as a threshold
device: the state xi of node i changes from 0 to 1 and vice
versa as soon as the density of 1’s in its neighborhood ex-
ceeds �. � can be formalized to

����: xi�t + 1� = �xi�t� , �i � � ,

1 − xi�t� , �i � � .
� �1�

The local density �i can be expressed by �i=
1
di

� jAijxj, where
di is the number of neighbors �the degree� of node i and A
denotes the adjacency matrix of the graph. The rule � has
been used previously to assess the information processing
capacities of synthetic graphs �31�. A complex dynamics on
MZ networks is achieved for a �0 around 0.3. The exact size
of the feasible interval depends on the maximal degree in the
network dmax via 1/dmax. Our implemented complex dynam-
ics can be considered as the continuous processing of pertur-
bations by the network. Following the argument of �32� that
perturbations can travel in both directions of an irreversible
reaction, we use undirected graphs as metabolic network rep-
resentations.

Information theory provides tools to analyze spatiotempo-
ral patterns—e.g., the Hamming distance, the mutual infor-
mation, or the Rényi entropy �33�. Here we apply the Shan-
non entropy �34� and the word entropy �31�, since their
combination was found to perform well in separating differ-
ent dynamic regimes �31�. We thus characterize a graph’s
capacity to process binary information with the entropy sig-

nature �S ,W� on the basis of the specific update scheme �.
Entropy values are calculated by analyzing N time steps for
each of the N nodes after a transient time of 9N time steps.

In our analysis, we take the mean Shannon entropy S of
the N individual entropies Si, calculated for each node’s time
series separately, as a measure for the structure of the overall
pattern,

S =
1

N
�
i=1

N

Si =
1

N
�
i=1

N

− �pi
0 log2 pi

0 + pi
1 log2 pi

1� . �2�

The probabilities pi
0 and pi

1 denote the ratios of 0’s and 1’s in
the time series of node i. Constant nodes yield Si=0, while
nodes with a homogeneous distribution of 0’s and 1’s—that
is, ever flipping and irregular nodes—contribute maximally
to S with Si�1. In the dynamical regimes regarded in this
study, the value of S is a measure for the homogeneity of
dynamical behaviors on the level of single states: Large val-
ues of S emerge for an overall oscillatory or complex dynam-
ics, while smaller values of S indicate the existence of con-
stant time series within the patterns.

The word entropy W serves as a simple and easily appli-
cable complexity measure of the emerging patterns beyond
single time steps. To quantify the irregularity of the time
series of a single node, we count the number of constant
words—i.e., time blocks of constant cell states—of length l.
The probability pi

l is the number of words of length l divided
by the number of all constant blocks in the time series of
node i. The maximal possible word length is simply the
length t of the time series analyzed. The word entropy W of
a pattern is the average over the individual time series’ en-
tropies Wi and is defined as

W =
1

N
�
i=1

N

Wi =
1

N
�
i=1

N 	− �
l=1

t

pi
l log2 pi

l
 . �3�

Patterns with solely oscillatory or stationary behaviors result
in W=0 while an overall irregular or complex behavior re-
sults in high W.

We use the term entropy for our observables due to their
formal definition and due to the application of similar con-
cepts in information theory �34� and the theory of cellular
automata �the word entropy serves as a feasible simplifica-
tion of the “block entropy,” introduced in �35��. Note, how-
ever, that the two entropy measures defined in Eqs. �2� and
�3� may not be interpreted in the standard thermodynamical
way, since we average over the individual entropies of an
ensemble of coupled dynamical entities. Note also that the
Wi are not bound to the interval �0,1�.

III. RESULTS

The metabolic network of the yeast, S. cerevisiae, in the
MZ database comprises N=752 nodes and L=777 links. N
=448 nodes and L=564 links remain in the largest connected
component of this network. It is characterized by a diverse
mixture of linear chains of nodes and hubs connecting chains
and single elements �see Fig. 1�a��. This topological diversity
is reproduced in the patterns which emerge from running
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���0� on the network �see Fig. 1�b��: Constant and oscilla-
tory time series coexist with irregular time series, where
nodes switch between alternating and constant behavior in an
unpredictable manner. A randomized network, where the to-
pology is changed but the degree sequence of the graph is
preserved by always switching the links of two pairs of
nodes as proposed in �36�, shows patterns which are domi-
nated by irregularities. These differences in the dynamic re-
sponse manifest themselves in different entropy signatures of
the yeast network and randomized counterparts �see Fig.
1�c��. The mean entropy differences for � are �S=Srand
−Syeast=0.089 and �W=Wrand−Wyeast=0.50. Apparently, the
yeast topology is capable of reducing the resulting
entropies—that is, of regularizing the dynamics imposed on
it. We checked for any rule among the cellular automata on
the graphs set of rules �28� leading to complex patterns on
the yeast topology that confirms the enhanced regularizing
capacity of the real metabolic network. Note that here and in
the following all graph modifications do not only conserve
the overall degree distribution but also the degree
sequence—that is, the individual degrees of all nodes. More-
over, we ensure that the randomized graph is connected after
every randomization step.

We probe the networks of all species in the MZ database
and randomized counterparts with the ���0� dynamics. We
find reduced entropy signatures for the real topologies for 99
of the 107 species. The networks of the remaining 8 species
are extremely sparse and therefore difficult to properly ran-
domize. A reduced �S ,W� is still observed if we exclude
constant or trivially oscillating nodes from the analysis. Not
too sparse metabolic networks �we choose here a link to
node ratio L /N�1.22� can be treated in a statistically robust
manner and cluster in the entropy plane at distinctly smaller
values than their randomized counterparts.

The modification of a network in single randomization
steps but at fixed initial conditions leads to a path within the
entropy plane. Consequently, this assessment of dynamic
performance is highly systematic: Small changes in graph
topology lead to small changes in the entropy signature. In
Fig. 2, such a randomization procedure connects the meta-
bolic network of the yeast and its randomized counterpart.
The opposite direction, from the randomized counterpart to-
ward the region of minimal entropies, can in principle be

followed by an appropriate randomization process. In this
sense, the �S ,W� entropy plane—or an adequate set of other
dynamic observables—may provide an orientation for simu-
lated evolution or purposive topological design.

The randomization process alters a number of prominent
topological properties: The average path length and the clus-
tering coefficient �37� are reduced, degree correlations �23�
are diminished, and modular substructures �6,8� are disinte-
grated. In order to investigate whether the optimization of
the metabolic networks goes beyond this set of topological
observables, we perform different minimal topological per-
turbations and assess the corresponding entropy shift.

We determine the entropy signatures of the yeast network
and a modified graph, where only a single modification step
has been performed, for different random initial conditions
�Fig. 3�a��. Averaging over the initial conditions yields the
average entropy shift for one specific topological perturba-

FIG. 1. �Color online� �a� A graph representation of the largest connected component of the unipartite, substrate-centric metabolic
network of yeast with N=448 nodes and L=564 links. �b� The spatiotemporal pattern for the ���0� dynamics on the yeast metabolic network
after a transient of N time steps has been dropped. For visual clarity, we only show 200 nodes for 200 time steps. �c� Entropy signature of
the yeast metabolic network �black� and randomized �red�, hierarchized �orange�, and antihierarchized �blue� counterparts �see �23� for
details of these randomization procedures� with �Pearson� degree correlations of 0.05, 0, +0.3, and −0.3, respectively. Each point represents
the entropy signature of the respective network for a randomly selected initial condition.
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FIG. 2. �Color online� Average entropy signature of the meta-
bolic networks of 22 species and randomized counterparts. The re-
gion where the metabolic network topologies �black boxes� reside is
clearly separated from the entropy signatures of their randomized
counterparts �red boxes� of the same size, connectivity, and degree
sequence. L randomization steps have been performed on every
network. All shown networks have a link to node ratio L /N�1.22.
Error bars indicate the spreading of the entropy values due to dif-
ferent random initial conditions. Additional investigations showed
that the separation in the plane is robust against variations of posi-
tion and length of the analyzed pattern. A path between the entropy
signature of the yeast and its randomized counterpart �dotted line� is
obtained by stepwise randomization. The species abbreviations re-
fer to the identifiers used in the MZ database.
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tion �Fig. 3�b��. Averaging over many topological perturba-
tions results in a vector which indicates the mean shift in the
entropy plane due to a specific modification protocol �Fig.
3�c��. We observe an average entropy increase for a single
randomization, hierarchization, and antihierarchization step
�Fig. 3�d��, where the latter two modifications, when iterated,
lead to positive and negative degree correlations, respec-
tively �see �23� for an explanation of the corresponding al-
gorithms�. In order to retain the modular structure of the
network we identify modules with a path length algorithm
similar to the one described in �38� and randomize solely
links within or between single modules. Both modifications
reveal an average entropy increase compared to the original
metabolic networks �Fig. 3�d��. In the case of intramodular
randomization, the similarity to a random flip suggests a to-
pological optimization within the modules. The small shift
due to intermodular randomization indicates an optimized
structure on the highest modular scale. We confirmed this
result for another module identification algorithm based on
the topological overlap of nodes �6�. Moreover, we con-
firmed an average entropy increase for protocols where a link
flip is only allowed if the average clustering coefficient is
conserved or increased due to a single randomization step
�Fig. 3�d��. The same is true for a randomization protocol
which conserves the average path length �Fig. 3�d��. Again,
we ensured that the randomized networks remain connected
through the application of the various randomization proto-
cols. For all conditional randomization protocols, an average

entropy increase can result from a limited number of
sampled topologies. We checked that this is not the case.
Furthermore, the entropy shift increases with the number
of randomization steps—i.e., the modification depth—
performed on the topology �data not shown�. Strongly hier-
archized and antihierarchized networks �with considerably
positive and negative Pearson degree correlations of +0.3
and −0.3, respectively� cluster in the entropy plane far apart
from the original networks and slightly below and above
randomized networks �see Fig. 1�c��.

Summarizing, the different topological perturbations
clearly show that the pronounced regularizing capacity of
real metabolic networks is not trivially associated with a
single topological property within the set of graphs with a
given degree distribution. Moreover, this property goes be-
yond simple degree correlations and modularity and is fur-
thermore persistent on the level of individual modules. One
can ask if the reduced entropy signature of real metabolic
networks compared to randomized counterparts is an artifact
of the specific network representation we discuss throughout
this article. However, we verified the regularizing capacity
of metabolic network topologies for another unipartite
substrate-centric representation, where current metabolites
have not been removed from the system. Due to the exis-
tence of these highly connected hubs, the 43 networks dis-
cussed in �26� are highly connected and show extremely
short average path lengths. All systems with sufficient net-
work size �N�200� display a pronounced regularizing ca-
pacity compared to the randomized counterparts and an av-
erage entropy signature increase for single randomization
steps. This is also true for two other networks we explicitly
checked: a directed version of the yeast network derived
from the MZ database and an undirected enzyme-centric net-
work based on the yeast stoichiometric matrix �39�, where
two enzymes are connected by a link if the product of the
reaction catalyzed by the first enzyme serves as an educt for
the second. Since a regularizing capacity is found for other
representations of metabolic networks as well, we think that
this finding is a generic property of the network architecture
of metabolic processes.

Passing from a real metabolic network to the randomized
network samples is a subset of graphs with a particular de-
gree sequence. Another level of comparison is achieved if we
regard the entropy signatures of simple model graphs of the
same network size and connectivity—that is, the same num-
ber of nodes and links: scale-free graphs obtained with a
Barabási-Albert �BA� scheme �10� analog �where the number
of attached links to newly introduced nodes varies to achieve
the desired number of links� and regular graphs �where again
the number of next-nearest neighbors differs between 2 and
3� after a few rewiring steps �small-world graphs� according
to the original Watts-Strogatz scheme �37�. Figure 4 shows
the corresponding mean entropy signature and standard de-
viation for the 22 species from Fig. 2. Obviously, the syn-
thetic model graphs react in a highly specific manner to the
imposed dynamics: They separate from the metabolic net-
works and from each other and cluster tightly in the entropy
plane. The scale-free graphs exhibit a slightly reduced word
entropy compared to the real metabolic network, but an �on
average� higher Shannon entropy. For the small-world graphs
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FIG. 3. �Color online� Effect of minimal topological perturba-
tions in yeast. Method: �a� for different random initial conditions,
we yield entropy signatures for the original unperturbed network
�black diamonds� and a minimally modified topology �gray dots�;
�b� the shifts for each initial condition �gray arrows� are averaged
�black arrow�; �c� averaging over the ensemble of similarly modi-
fied topologies leads to the average entropy shift for this type of
topological perturbation �red arrow�. Result: �d� systematic increase
of the entropy shift with a single randomization step. Different pro-
tocols are performed—namely, arbitrary randomization, randomiza-
tion under conservation of clustering coefficients and average path
length, respectively, hierarchization and antihierarchization, and in-
termodular and intramodular randomization.
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again both entropies are elevated compared to the real meta-
bolic networks. Another important feature of Fig. 4 is that for
the different network types the two entropies respond differ-
ently. How do those model graphs react to randomization?
For these synthetic networks the entropy shift measures the
bias of the dynamic response, contained in the particular
construction algorithm. For the scale-free graphs, we find a
small reduction of the average word entropy and Shannon
entropy under randomization, indicating that the original
model graphs are already rather unbiased from this dynamics
perspective. If we randomize small-world graphs, and
thereby break up the inherent regular neighborhoods, the ran-
domized networks exhibit a reduced average word entropy
and a elevated average Shannon entropy �31�. Thus, an av-
erage entropy increase, as observed for the metabolic net-
works discussed in this paper, is not a trivial effect of the
randomization procedure. On the contrary, for chains of
regularly connected nodes, a topological perturbation in gen-
eral leads to a decreasing dynamic complexity. In a previous
study �40�, we showed this behavior for synchronous and
asynchronous update schemes with different observables.
Moreover, we showed that both topological perturbation �i.e.,
the rewiring of links� and dynamic noise increase the regu-
larizing capacity of an initially undisturbed cellular automa-
ton.

IV. DISCUSSION

Considering the metabolic network as a system of inter-
acting threshold devices and studying the dynamics of this
system reveals how perturbations are processed by the sys-
tem. In essence, our entropies measure how a node in the
network—solely due to the network architecture—reacts to
fluctuations in its environment. The network topology might
enhance such fluctuations �leading to increased entropies� or
dampen out such fluctuations �leading to decreased entro-
pies�. We find that network representations of metabolism
clearly and unambiguously belong to the latter category.

Characterizing complex networks with dynamic probes is
a promising approach. The recent progress in understanding
genetic networks by mapping out the information flow
through the corresponding graphs constitutes an excellent ex-
ample of this line of thought �41�. Similarly, our analysis of
metabolic networks condenses a variety of topological fea-
tures into the entropy signature of the network, while the
topological impact entering this quantity is selected with re-
spect to its dynamic effect. The method discussed here may
also serve as an unbiased probe to assess the dynamic per-
formance of different network types, like protein-interaction
networks or transcriptional networks, as well as other natural
or technical networks. Moreover, using system-specific tai-
lored dynamics could enhance the structure shaping process
in engineering artificial network topologies.

Our key result is that metabolic network topologies em-
body the capacity to reliably regularize an imposed
dynamics—expressed by a systematically reduced entropy
signature compared to randomized networks with identical
degree sequences. The large-scale architecture of metabolic
networks is designed in such a way that complex and chaotic
dynamics are systematically dampened out. We believe that
the architectural disposition for steady-state dynamics in me-
tabolism is manifested in the observed regularizing capacity
of the metabolic network topologies.

In this investigation we focused on the entropies averaged
over the whole network. Particularly for a direct comparison
with standard analysis techniques of metabolic networks, we
believe that the entropy distribution over the network could
also be extremely informative. The individual responses of
the system’s entities to a dynamic probe might help charac-
terize different contributions to the functional state of the
system, or in terms of metabolic networks, it might help one
understand the principles governing the reorganization of
steady-state fluxes under topological perturbations �42�.
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